Dynamic block GMRES: an iterative method for block linear systems
نویسندگان
چکیده
We present variants of the block-GMRES(m) algorithms due to Vital and the block-LGMRES(m,k) by Baker, Dennis and Jessup, obtained with replacing the standard QR factorization by a rank-revealing QR factorization in the Arnoldi process. The resulting algorithm allows for dynamic block deflation whenever there is a linear dependency between the Krylov vectors or the convergence of a right-handside occurs. Fortran 90 implementations of the algorithms were tested on a number of test matrices and the results show that in some cases a substantial reduction of the execution time is obtained. Also a parallel implementation of our variant of the block-GMRES(m) algorithm, using Fortran 90 and MPI was tested on SunFire 15K parallel computer, showing good parallel efficiency.
منابع مشابه
Product Hybrid Block GMRES for Nonsymmetrical Linear Systems with Multiple Right-hand Sides
Recently, the complementary behavior of restarted GMRES has been studied. We observed that successive cycles of restarted block BGMRES (BGMRES(m,s)) can also complement one another harmoniously in reducing the iterative residual. In the present paper, this characterization of BGMRES(m,s) is exploited to form a hybrid block iterative scheme. In particular, a product hybrid block GMRES algorithm ...
متن کاملRestarted Block Gmres with Deflation of Eigenvalues
Block-GMRES is an iterative method for solving nonsymmetric systems of linear equations with multiple right-hand sides. Restarting may be needed, due to orthogonalization expense or limited storage. We discuss how restarting affects convergence and the role small eigenvalues play. Then a version of restarted block-GMRES that deflates eigenvalues is presented. It is demonstrated that deflation c...
متن کاملNote to the Global GMRES for Solving the Matrix Equation AXB = F
In the present work, we propose a new projection method for solving the matrix equation AXB = F . For implementing our new method, generalized forms of block Krylov subspace and global Arnoldi process are presented. The new method can be considered as an extended form of the well-known global generalized minimum residual (Gl-GMRES) method for solving multiple linear systems and it will be calle...
متن کاملComputing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process
In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...
متن کاملFlexible Variants of Block Restarted GMRES Methods with Application to Geophysics
In a wide number of applications in computational science and engineering the solution of large linear systems of equations with several right-hand sides given at once is required. Direct methods based on Gaussian elimination are known to be especially appealing in that setting. Nevertheless when the dimension of the problem is very large, preconditioned block Krylov space solvers are often con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. Comput. Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2007